
Research Statement - Lior Alon
My research lies in mathematical physics and intersects with various mathematical disciplines, in-

cluding Spectral Geometry, Graph Theory, Morse Theory, Real Algebraic Geometry, Fourier Analysis,
Dynamics, and Number Theory. My papers can be divided into three subjects:

1. Fourier Quasicrystals and Lee-Yang (stable) polynomials [7, 9]

2. Spectral geometry of quantum graphs [2–6]

3. Nodal edge count and Morse theory of magnetic operators on discrete graphs [8]

We begin with a bird’s-eye view of each subject. More details are later.

0.1 Fourier Quasicrystals

Crystals are periodic structures. The Poisson summation formula captures periodicity via Fourier trans-
form, stating that it transforms the counting measure of any lattice to the counting measure of its
dual lattice. A Fourier Quasicrystal (FQ) resembles a periodic lattice in the sense that it is a measure
supported on a discrete set whose Fourier transform is also a measure supported on a discrete set.

Kurasov and Sarnak recently provided a novel construction of non-periodic one-dimensional FQs by
intersecting irrational lines with periodic hypersurfaces of certain kind, see Figure 1 Left. We proved
that every FQ with integer weights can be constructed this way, and used it to describe the distribution
of gaps between atoms. In an ongoing work, we extend this construction to FQs of any dimension d, by
intersecting d-dimensional vector spaces with certain codimension-d algebraic varieties, see Figure 1.
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Figure 1: (Left) Construction of 1D Fourier Quasicrystal. (Right) A Voronoi diagram of a 2D Fourier
Quasicrystal.

0.2 Spectral geometry, quantum chaos, and nodal count of quantum graphs

Spectral Geometry explores the relationship between the geometry of an object and the wave patterns
and frequencies it supports, represented by the eigenfunctions (wave-functions) and eigenvalues (energy
levels) of the associated Laplacian. While for simple objects like a line segment (quantum infinite
well), the differential equations can be explicitly solved, this isn’t generally the case. We often settle
for qualitative descriptions of solutions and their average properties. However, there is balm as well as
bitterness, the geometry of an object becomes more complex, its associated spectrum and wave-functions
often exhibit universal properties, which makes them easier to study. The field of quantum chaos focuses
on such phenomena.
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A quantum graph, or metric graph, comprises a network of line segments of varying lengths, connected
at their endpoints following a graph structure. The Laplacian acts as the second derivative on functions
on the segments that satisfy certain boundary conditions at each vertex, resulting in a system of coupled
ODEs. The quantum graph (by which we mean the Laplacian on it) possesses infinitely many eigenvalues
and eigenfunctions. This model strikes a balance between simplicity and complexity, as eigenfunctions
can be explicitly expressed, but with Q-linearly independent edge lengths and sufficiently large graph
structures, universal phenomena associated with quantum chaos emerge.

Our work shows that such universal phenomena manifest in the fluctuations of the nodal count
sequence. Here, the nodal count sequence stands for the number of points where the k-th eigenfunction
vanish, as k → ∞. It is known to equal to k−1 plus a positive deviation referred to as nodal surplus, which
is bounded by β, the first Betti number of the graph. We demonstrated numerically that for sufficiently
large graphs, the nodal surplus tends to a Gaussian centered at β/2 and we proved convergence to a
Gaussian for several graph families, as predicted.

These results and others are based on the analysis of a moduli space encompassing all quantum graphs
associated with a given graph structure. This space was recently proven to be irreducible by Kurasov
and Sarnak. In a separate study, I leveraged this irreducibility to analyze generic eigenfunctions and the
spectrum’s rigidity. Specifically, I demonstrated that if two quantum graphs share the same Q-linearly
independent edge lengths but different graph structures, they cannot share common eigenvalues, except
for a possibly zero-density sub-sequence.

0.3 Nodal edge count and Morse theory of magnetic operators on discrete graphs

The discrete Laplacian H of a graph G with n edges is the n × n matrix with Hii equal to the degree
of the i-th vertex, Hij = −1 when (i, j) is an edge, and Hij = 0 otherwise. The nodal edge count of an
eigenvector v of H is the number of edges (i, j) for which the sign changes: v(i)v(j) < 0. For a general
n× n real symmetric matrix H, its supporting graph G is defined as the graph with n vertices and (ij)
is an edge whenever Hij ̸= 0 and i ̸= j. If we order the eigenvalues of H, λ1(H) ≤ . . . ≤ λn(H), the
nodal edge count of the k-th eigenvector v is the number of pairs i < j such that v(i)v(j)Hij > 0, which
coincides with the special case of the discrete Laplacian.

As with quantum graphs, the nodal edge count is k− 1 plus a nodal surplus bounded between 0 and
β, the first Betti number of the graph. In the case of quantum graphs k → ∞ while β is fixed, while
here k ≤ n and β is often much larger, comparable1 with n2. One might guess that the nodal surplus
concentrates around β/2, symmetrically, so that its sum over all eigenvectors is nβ/2. However, in a
forthcoming work, we provide extreme examples for every n and β ≤

(
n−1
2

)
where the sum of the nodal

surplus is as small as β and as large as (n− 1)β, which we prove to be the sharp general bounds for the
nodal surplus sum.

On the other hand, our initial guess is justified when we consider the sum over all the signings of the
graph (changing the signs of the off-diagonal entries of H symmetrically). Numerical studies suggests that
this distribution tends to a Gaussian around β/2. In a separate work, we proved that this distribution is,
indeed, precisely binomial with mean β/2, in the case of a complete graph and operators with sufficiently
large potential.

The proofs of these results are based on a remarkable relation between the nodal surplus of an
eigenvector and the Morse index of the corresponding eigenvalue with respect to magnetic perturbations.
H is perturbed by a real anti-symmetric matrix α (often called magnetic potential) as follows (Hα)jℓ =
Hjℓe

iαjℓ . Gauge symmetry of Hα reduces the dependence of the eigenvalues of Hα to β dimensions,
the first Betti number of the graph. The k-th eigenvalue λk(Hα) may be treated as a function on a
β-dimensional torus, with critical points at H and its signings. If one assumes that λk is simple and
v(i) ̸= 0 for all i then each such critical point is non-degenerate with Morse index equal to the nodal
surplus of the associated eigenvector v. We showed that if the eigenvector does vanish at a vertex, then
the critical point is degenerate, and it lies on a non-singular critical manifold which has the topology of
a well-studied space of planar linkages.

1β can be as large as
({n−1

2}

)
which is the case for the complete graph.
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1 Fourier Quasicrystals and Lee-Yang (stable) polynomials

Poisson’s summation formula says that if Λ ⊂ R is a discrete periodic set, then the sum
∑

x∈Λ f(x)

for a “nice” function (Schwartz class) is proportional to the sum of the Fourier transform
∑

k∈Λ̂ f̂(k)

over the dual set Λ̂. The question of whether non-periodic summation formulas exists puzzled many
mathematicians and relates to many fields. Early examples were given by Kahane and Mandelbrojt [29]
and Guinand [27]. To frame the question, given a discrete set Λ with complex-coefficients (weights)
{ax}x∈Λ, the atomic measure µ =

∑
x∈Λ axδx is called a Fourier Quasicrystals (FQ)2 if there exists

another discrete set S complex-coefficients (weights) {ck}k∈S such that∑
x∈Λ

axf(x) =
∑
k∈S

ckf̂(k) for all “nice” f,

and also
∑

x∈Λ |ax|f(x) and
∑

k∈S |ck|f̂(k) are finite. Although examples of non-periodic FQs were
found, the question of finding a non-periodic FQ with unit coefficients ax ≡ 1 and uniformly discrete
support Λ remained open until recently. Kurasov and Sarnak provided such an example [32], based on
the trace formula for quantum graphs. In this work, they provided a novel construction of FQs. A
polynomial p(z1, . . . , zn) is called Lee-Yang, or stable on the inner-disc D and outer-disc C \ D, if p has
no zeros in Dn ∪ (C \ D)n.

Theorem 1 (Kurasov, Sarnak). Given a Lee-Yang polynomial p(z1 . . . , zn) and positive frequencies
ω = (ω1, . . . , ωn) ∈ Rn

+, let Λ be the zero set of F (x) = p(eixω1 , . . . , eixωn) with multiplicities ax. Then
the zeros counting measure µp,ω =

∑
x∈Λ axδx is an FQ.

This construction is visualized in Figure 1, showing the intersection of the line t 7→ (tω1, tω2) with
the zero set {(x, y) : p(eix, eiy) = 0}, for a two-dimensional choice of positive ω and Lee-Yang p. Based
on a result of Olevskii and Ulanovskii [34], we proved in [7] an inverse result:

Theorem 2 (A., Cohen, Vinzant). Every FQ with positive integer weights ax ∈ N has the form µp,ω for
some n ∈ N, Lee-Yang polynomial p(z1 . . . , zn) and positive frequencies ω = (ω1, . . . , ωn) ∈ Rn

+ that are
Q-linearly independent.

From here on, when writing µ = µp,ω we assume that p is Lee-Yang and ω has positive Q-linearly
independent entries. In [9], following [31], we consider the decomposition of p into distinct irreducible
(Lee-Yang) polynomials p =

∏N
j=1 q

cj
j , and show how it determines whether µ is periodic or not.

Theorem 3 (A., Vinzant). If µ = µp,ω as above, then µ =
∑N

j=1 cjµqj ,ω. If qj has only two monomials,
then µqj ,ω is periodic. Otherwise, µqj ,ω is supported on a “very non-periodic” set Λj: it intersects any
set of finite Q-linear dimension in at most finitely many points (with uniform bounds)

|Λj ∩A| ≤ C(qj ,m), for every A = spanQ{x1, x2, . . . , xm}.

Given n ∈ N and d ∈ Nn let LY(n, d) denote the space of Lee-Yang polynomials in n variables with
degree dj in zj for all j.

Theorem 4 (A., Vinzant). For any n ≥ 2 and d ∈ Nn there is a generic3 subset in LY(n, d) of
polynomials p such that for any positive Q-linearly independent ω the FQ µp,ω is “very non-periodic”
with unit coefficients and uniformly discrete support.

2The name quasicrystal comes from crystallography, the experimental science of discerning the arrangement of atoms
in crystals. The word crystal refer to a solid material with periodically ordered atomic structure. The atomic structure
is measured indirectly through its Fourier transform by diffraction experiments. The diffraction of a crystal has sharp
picks, while unordered atomic structures have a continuous ”smeared” diffraction pattern. Surprisingly, materials with
non-periodic atomic structure that exhibit a diffraction with sharp picks were found [37], and were called quasicrystals.
These correspond to non-periodic (three-dimensional) summation formulae, but the support of the Fourier transform is
usually dense, unlike Fourier Quasicrystals.

3An open, dense subset with full measure, whose complement has lower dimension.
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We show in [9] that FQs with positive integer weights have well defined gap distributions. Writing
µp,ω =

∑
j∈Z xjδxj where {xj}j∈Z = Λ are the zeros of F (x) = p(eixω1 , . . . , eixωn) numbered increasingly

with multiplicity, the atomic measure behaves like a random point processes with random i.i.d gaps
xj+1 − xj ∼ ρ for some gap distribution ρ = ρ(p, ω).

Theorem 5 (A., Vinzant). Let µp,ω =
∑

j∈Z xjδxj as above. Then there exists a probability measure
ρ = ρ(p, ω), supported on a finite interval [0, R], such that

lim
N→∞

1

N

N∑
j=1

f(xj+1 − xj) =

∫
fdρ, for every continuous f : R → C.

If µp,ω is periodic then ρ is a finite sum of atoms. If p is irreducible with more than two monomials
then ρ is absolutely continuous. Otherwise it is the sum of an absolutely continuous measure and finitely
many atoms.

A particular case of interest studied in [9] is the limit of ρ(p, ω) as ω → 1 = (1, 1, . . . , 1) while
remaining Q-linearly independent. The limit ν(p,1) can be explicitly expressed as the empirical measure
of simpler random distributions. In particular, motivated by Quantum Chaos, we provide examples where
the limiting gap distributions are well known distributions:

1. Poisson: If p = (1 − z1) · · · (1 − zn) then ν(p,1) is the empirical measure of the gaps between n
random points on the unit circle. It converges to the Poisson distribution as n → ∞.

2. CUE: If u ∼ Haar(Un) is a random n× n unitary matrix and p = (1− diag(z1, . . . , zn)u), then p
is a random Lee-Yang polynomial, and the empirical measure Eν(p,1) is the gap distribution of
the eigenvalues of a random u ∼ Haar(Un). This measure has an n → ∞ limit which is called the
CUE gap distribution.

1.0.1 Future work on one-dimensional FQs

One of my goals is to prove Smilansky’s conjecture [12, 30] which says that the distribution of gaps
between eigenvalues of certain quantum graphs tend to the limiting gap distribution of random GOE
matrices, in some limit of large graphs. This can be formalized as convergence of gap distributions
ρ = ρ(p, ω) as above, for a special type of Lee-Yang polynomials, as the numebr of variables tends to
infinity. I intend to apply tools developed in this work to this problem.
In an ongoing project with an MIT undergraduate we used the explicit limit ν(p,1) to construct an
efficient algorithm to estimate the gap distributions of µp,ω when the Q-linear dimensionof ω is 1 < d < n.
We analyzed the polynomial p of the graph in [30], which has n = 6 and for which we know that ρ(p, ω)
is close to GOE when d = 6. We found that the distribution deviates from GOE as d decrease with
a significant difference between the intermediate dimensions d = 2, 3 to d = 4, 5. I intend to further
investigate this phenomena in greater generality, in hope of finding a critical dimension.

1.1 Future work on High Dimensional Fourier Quasicrystals

The Kurasov-Sarnak construction of one-dimensional FQs considers the intersection of a codimension one
variety {z ∈ Cn : p(z) = 0} with a one-dimensional curve {exp(ixℓ) : x ∈ C}, where exp : Cn → (C∗)n is
the coordinate-wise exponent. In an ongoing work we generalized this construction to higher dimensions.
To do so we define the notion of a Lee-Yang variety X ⊂ (C∗)n of a co-dimension c, by means of allowed
sign changes of consecutive entries of (log |z1|, . . . , log |zn|) for any (z1, . . . , zn) ∈ X.

Theorem 6 (A., Kummer, Kurasov, Vinzant). Let X ∈ (C∗)n be a Lee-Yang variety of codimension
d, let L ∈ Rn×d be a matrix with positive d × d minors, and let Λ = {x ∈ Cd : exp(iLx) ∈ X}. Then
Λ ⊂ Rd, is discrete, and µ = µ(X,L) =

∑
x∈Λ δx is a d-dimensional FQ.

Theorem 7 (A., Kummer, Kurasov, Vinzant). In the above construction, if X is irreduicoble and is not
a torus coset, and if the entries of L are algebraically independent over Q, then Λ is “very non-periodic”
as in Theorem 3.
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In particular, any set contained in a projection of a high dimensional lattice can intersect Λ in at
most finitely many points. This includes the set whose Voronoi diagram is the Penrose tiling, or any
other ”cut and project” set.

The Voronoi diagram helps visualize such FQs. A two-dimensional example is given in Figure 1,
given by a certain choice of L ∈ R2×3 with positive minors, and a one-dimensional Lee-Yang variety
X ⊂ C3. In this case, the torus part X ∩ T3 has two connected components, so the cells in the diagram
are colored according to the component this atom came from.

2 Spectral geometry of quantum graphs (metric graphs)

A finite Quantum graph, or metric graph, (Γ, ℓ) is described by a graph Γ = (V,E) of N edges e1, . . . , eN ,
each identified with a line segment ej = [0, ℓj ], where ℓ = (ℓ1, . . . , ℓn) is the vector of edge lengths.
In this way a function f on (Γ, ℓ) is described by its restrictions to edges f |ej : [0, ℓj ] → C, and the
Laplacian ∆ acts edgewise by (∆f)|ej = −f |′′ej on functions that satisfy suitable (Neumann-Kirchhoff)
vertex conditions. By eigenvalues and eigenfunctions of (Γ, ℓ) we mean those of the Laplacian. We
number the (square-root) eigenvalues increasingly including multiplicity,

0 = k0 < k1 ≤ k2 ≤ k3 . . . ↗ ∞.

As a remark, this model can be generalized by changing vertex cinditions, and adding magnetic
and electric potentials, see [16] for a thorough review on quantum graphs. Quantum graphs ap-
peared in various scientific disciplines in the last few decades, modeling complex phenomena such as
superconductivity in granular and artificial materials [1], acoustic and electromagnetic wave-guide net-
works [13] and Anderson localization [19,36] to name but a few. However, the “simple” model described
above already serves as a good one-dimensional model for spectral geometry and quantum chaos, as
discussed in [25]. For this end, we consider large graphs and Q-linearly independent edge lengths.
The graph is associated with an 2N × 2N real orthogonal matrix SΓ, and a (Lee-Yang) polynomial
PΓ(z1, . . . , zn) = det(1− diag(z1, . . . , zn, z1, . . . , zn)S) such that the spectrum of (Γ, ℓ) correspond to the
zeros of k 7→ p(eikℓ1 , . . . , eikℓN ) = p(exp(ikℓ)). The eigenfunction f corresponding to the eigenvalue k2 is
described by a, an eigenvector of the unitary matrix diag(exp(ikℓ), exp(ikℓ))S with eigenvalue 1.4 This
observation was made independently in [30, 35] and led to the trace formula for quantum graphs, to
spectral statistics computations [12,30] and many other applications. Recently, Kurasov and Sarnak [31]
showed that PΓ is irreducible (except for certain specific graphs) which allowed to classify arithmetic
properties of the spectrum [31,32].

2.1 Universal nodal count for metric graphs

Let ϕ(n) denote the number of zeros of the n-th eigenfunction of a given quantum graphs (Γ, ℓ). It is
called the nodal count5 and it was proven in [14, 26] to be bounded between n− 1 ≤ ϕ(n) ≤ n− 1 + β,
assuming the n-th eigenvalue kn is simple and its eigenfunction fn does not vanish on vertices. In [2,3]
we show that these are generic conditions. It was conjectured in [26] that the bounded fluctuation
σ(n) = ϕ(n) − (n − 1) should obey a universal behavior, for large enough and highly connected graphs
with Q-linearly independent lengths. The fact that the nodal surplus sequence {σ(n)}n∈N obeys a well
defined law was shown [2]. For simplicity in all theorems to follow, unless stated other wise, the graph
Γ is assumed to have no vertices of degree two and no edge connecting a vertex to itself.

Theorem 8 (A., Band, Berkolaiko). Given a graph Γ with first Betti number β and Q-linearly indepen-
dent ℓ, there is a random variable σ = σ(Γ, ℓ) taking values in {0, 1, . . . , β}, symmetric around its mean
which is β/2, such that

lim
n→∞

|{m ≤ n : σ(m) = j}|
N

= P (σ = j), for all j ∈ {0, . . . , β}.
4The restriction of f to ej and the entries aj and aj+N of a are related by f |ej (t) = aje

−ikt+aj+Ne−ik(ℓj−t) for t ∈ [0, ℓj ].
5For an eigenfunction with high enough eigenvalue, the number of zeros and the number of nodal domain differ exactly

by β, so the fluctuation statistics is the same.
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The proof relies on two previous results. A characterization of σn as the Morse index of the n-th
eigenvalue as a function of magnetic perturbation of the Laplacian [18], and an ergodicity argument
given in [12]. For a certain family of graphs we were able to exploit certain symmetry of the magnetic
characterization to calculate the distribution of σ. We say that Γ has disjoint cycles if any pair of distinct
simple cycles in Γ are disjoint (not sharing any vertex).

Theorem 9 (A., Band, Berkolaiko). If Γ is a graph with disjoint cycles and ℓ is Q-linearly independent
ℓ, then σ ∼ Bin(β, 12). In particular, Eσ = β/2, Varσ = β/4, and

σ − Eσ√
Varσ

→ Z, Z ∼ N(0, 1), for β → ∞.

In [5], we show that the distribution of σ = σ(Γ, ℓ) is convex in ℓ. Based on this fact and the ergodicity
argument, we constructed an efficient algorithm that calculates the maximal deviation (kolmogorov-
smirnov distance) of σ−Eσ√

Varσ
from N(0, 1) among all possible Q-linearly independent ℓ’s. We sampled

25 different types of graphs, some chosen at random and some are deterministic. The decrease of the
maixmal deviation as β grows was clearly shown, uniformly, regardless of any other graph property. This
led us to the following strong conjecture.

Conjecture 1 (A., Band, Berkolaiko). The maximal deviation between σ(Γ, ℓ) and the Gaussian dis-
tribution of same mean and variance goes to zero as β → ∞, uniformly over all (Γ, ℓ) with first Betti
number β and Q-independent ℓ. Moreover, the variance of σ(Γ, ℓ) is of order β.

We also prove in [5] that the conjecture holds for two more families of graphs.

2.1.1 Future work and questions

Some questions I intend to work on in the future, in the context of the universal distribution of the
nodal surplus, include the nodal surplus distribution on sub-graphs, finding models of random graphs
for which σ(Γ, ℓ) can be estimated, applying the method of [5] to concatenation of graphs, and controlling
the correlation between the contributions of different cycles.

2.2 Neumann count

The concept of a Neumann partition was introduced independently in [33, 38], in analogy to nodal
partitions of manifolds, and was further developed in [10,11]. While for manifold the Neumann partition
of the manifold according to an eigenfunction is defined via its Morse data, the case of a quantum
graphs is simpler. The name “Neumann domain/partition” is due to the fact that the restriction of
an eigenfunction f to its Neumann domain Ω is itself a Laplacian eigenfunction on Ω with Neumann
domain boundary conditions. In [4, 6] we define the n-th Neumann partition of the quantum graph by
removing the critical points of the n-th eigenfunction. We denote the Neumann count by µn, namely
the number of connected components of {x ∈ (Γ, ℓ) : f ′

n(x) ̸= 0}, which for high enough eigenvalues is
equal to the number of critical points up to a constant shift. We always assume that the n-th eigenvalue
is simple and the eigenfunction fn has no vanishing derivatives at any vertex. In [3] I proved that these
are generic conditions. In [4], we provide topological upper and lower bounds on the Neumann count:

n+ 2− 2β − |∂Γ| ≤ µn ≤ n+ β,

where |∂Γ| is the number of degree 1 vertices of Γ. We prove an analog of Theorem 8, showing that the
fluctuations µn − n have well defined distribution which is symmetric around its mean |∂Γ| /2− 1. This
has applications for inverse problems, since the mean of this distribution gives |∂Γ|, which together with
the first Betti number β (obtained from the mean of the nodal surplus) provides an upper bound on the
number of vertices and edges.

Similarly to the nodal count, the fluctuations of the Neumann count seem to obey a universal Gaussian
behavior as well, from numerical simulation, which is uncorrelated with the nodal surplus distribution.
The limit in this case is when β+|∂Γ| → ∞. This includes trees, for which the nodal surplus is identically
zero.
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Theorem 10 (A., Band). [4] If Γ is a (3, 1)-regular finite tree and ℓ is Q-independent, then ν(n)−n−2
has a Binomial distribution with parameters Bin(|∂Γ| − 2, 12). In particular, it converges to a Gaussian
as |∂Γ| → ∞.

2.2.1 Future work and questions

Some further questions regarding the Neumann count are whether there exist distinct graphs with the
same nodal and Neumann count? Is there a Neumann count analog to the nodal-magnetic theorem [18]?
Numerically, it seems that the bounds −β ≤ ωn ≤ 2β + |∂Γ| − 2 are not optimal. We conjecture in [4]
that better bounds hold 0 ≤ ωn ≤ β + |∂Γ| − 2.

2.3 Generic properties of eigenvalues and eigenfunctions

Fixing a graph Γ of N edges and letting the edge-lengths ℓ change in RN
+ , we can consider the eigenpairs

(kn, fn)
∞
n=1 as functions of ℓ. Previous works of Friedlander [24] and Berkolaiko and Liu [17] showed

that there is a Baire-generic set of edge lengths G ⊂ RN
+ such that all eigenvalues of (Γ, ℓ) with ℓ ∈ G are

simple with eigenfunctions that do not vanish on vertices. In [3] I show that by restriction to a possibly
smaller generic set, we may take G such that the derivatives of each eigenfunction are non vanishing
on all vertices of degree > 1. I further show that the set G is also of full Lebesgue measure and its
complement is a countable union of sub-analytic sets of smaller codimension, and that we may take it
such that the derivatives of each eigenfunction are non vanishing on all vertices of degree > 1. We say in
such case that G is strongly generic. We had shown in [2] that for any Q-independent ℓ, the sequence of
eigenpairs (kn, fn)n∈N of (Γ, ℓ) has a density one subsequence of simple eigenvalues with eigenfunctions
that do not vanish on vertices. In [3] I consider a much larger class of spectral properties. Given an
eigenpair (k, f), with k > 0, let tracek(f) be the vector of values of f at the vertices, and the outgoing
derivatives of f normalized by 1

k . We consider two vertex values and two outgoing derivatives for each
edge so tracek(f) ∈ C4N . Consider the notation exp(kℓ) := (eikℓ1 , eikℓ2 , . . . , eikℓN ) ∈ CN .

Theorem 11 (A. ). Given a graph Γ of N edges and a polynomial q ∈ C[z1, . . . , z5N ]. Assume that
q(exp(kℓ), tracek(f)) is homogeneous in the tracek(f) coordinates. If there exists ℓ ∈ RN

+ such that (Γ, ℓ)
has a simple eigenvalue k > 0 with eigenfunction f such that

q(exp(kℓ), tracek(f)) ̸= 0.

Then, there is a strongly generic set of ℓ’s such that every eigenpair of (Γ, ℓ) has simple eigenvalue and
satisfies

q(exp(kℓ), tracek(f)) ̸= 0.

Moreover, for any Q-independent ℓ, there is a density one subsequence of eigenpairs (knj , fnj )j∈N, such
that knj is simple and

q(exp(knjℓ), traceknj
(fnj )) ̸= 0.

The main ingredient in the proof is that the polynomial PΓ is irreducible, which was conjectured by
Colin de Verdière [21], and proved by Kurasov and Sarnak [31]. One application of this theorem regards
common eigenvalues of different graphs. Gutkin and Smilansky [28] showed that distinct metric graphs
(Γ, ℓ) and (Γ′, ℓ′) with Q-independent ℓ and ℓ′ do not have the same spectrum. Theorem 11 may be
applied to provide a stronger statement for the case where ℓ = ℓ′.

Corollary 12 (A. ). If Γ and Γ′ are distinct (non-isomorphic) graphs of N edges, then there is a strongly
generic set of ℓ’s for which the only common eigenvalue of (Γ, ℓ) and (Γ′, ℓ′ = ℓ) is zero. Moreover, for
any Q-independent ℓ, there is a density one subsequence of (Γ, ℓ) eigenvalues which are not eigenvalues
of (Γ′, ℓ′ = ℓ).
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Future work:

In this line of research, my goal is to prove a a conjecture of Sarnak: For generic ℓ, the eigenvalues of
(Γ, ℓ) are Q-linearly independent.

Another goal in this context is “Quantum Unique Ergodicity” for large graphs with Q-independent
ℓ. This question, in the language introduced in [3], is whether all the trace vectors traceknj

(fnj ) in the

trace space have components of the order 1/N , as N → ∞. I believe some progress can be made by
applying algebraic tools to my construction of the trace space.

3 Nodal count distribution of signed matrices

Let G be a simple connected graph with n vertices, E edges and denote its first Betti number by
β = E − n + 1. Let H be a real symmetric n × n matrix supported on G with eigenvalues numbered
increasingly λ1(H) ≤ · · · ≤ λn(H). Assuming that λk(H) is simple and its eigenvector v has v(i) ̸= 0
for all i, the nodal edge count ϕ(H, k) is the number of pairs i < j such that v(i)v(j)Hij > 0. The nodal
surplus ϕ(H, k)− (k − 1) is bounded between 0 and β. See [22] for a review of the many works leading
to the upper bound, and [15] for the lower bound. As in the case of quantum graphs we consider the
distribution of the nodal surplus, and its mean, which we expect to be β/2. Equivalently, we expect the
sum of ϕ(H, k)− (k − 1) over k to be nβ/2. However, in a forthcoming work we show that the sum can
deviate drastically from β/2 with a distribution far from Gaussian.

Theorem 13 (A., Urschel). If H as simple eigenvalues with non-vanishing eigenvectors, then the sum
of the nodal surplus is bounded between β and (n− 1)β, and these bounds are sharp.
Moreover, for every n and β ≤

(
n−1
2

)
, we construct examples which attain these bounds. In particular,

for any choice of β < n− 2, we construct H with nodal surplus taking only 0 and 1 values.

On the other hand, numerical simulations suggests that if we consider the nodal surplus of all
eigenvectors for all different signings of H, then the distribution does tend to Gaussian around β/2.
We say that H ′ is a signing of H if it is real symmetric with H ′

ii = Hii and H ′
ij = ±Hij for all i and

j, and we denote the set of signings of H by S(H). Let us say that H is regular if it has only simple
eigenvalues with non-vanishing eigenvectors. In a separate work [8] we show

Theorem 14 (A., Goresky). If H has constant diagonal entries and every H ′ ∈ S(H) is regular, then

1

|S(H)|
∑

H′∈S(H)

(
1

n

n∑
k=1

ϕ(H ′, k)− (k − 1)

)
= β/2

If the off-diagonal entries of H are non-positive, it is called a discrete Schrodinger operator on G. It
has the form H = L+ V where L is a weighted Laplacian and V is a diagonal potential. Perturbing H
with a magnetic potential α, a real anti-symmetric matrix, yields a discrete magnetic operator Hα, with
(Hα)rs = Hrse

iαrs . Changing α to α+df , where (df)ij = f(i)− f(j), is called gauge transformation and
results in the conjugation ofHα by a unitary diagonal matrix diag(eif(1), . . . , eif(n)). The k-th eigenvalue,
considered as a function Hα 7→ λk(Hα), is gauge-invariant and reduce to a function on the quotient space
T(H), the space of gauge equivalence classes [Hα], which is β-dimensional torus. Berkolaiko [15] and
Colin de Verdiere [20] showed if H is a discrete Schrodinger operator, λk(H) is simple, and its eigenvector
v is non-vanishing, v(i) ̸= 0 for all i, then the eigenvalues function λk : T(H) → R has a non-degenerate
critical point at [H] with Morse index equal to ϕ(H, k) − (k − 1). In [8] we generalize this result and
characterize all possible critical points of λk.

Theorem 15 ( A., Goresky). The function λk : T(H) → R has exactly three types of critical points:

1. [Hα] for which λk(Hα) is a multiple eigenvalue.

2. [Hα] for which λk(Hα) is simple with non-vanishing eigenvector.
In this case [Hα] is a non-degenrate critical point with Morse index equal to the nodal
surplus, and it is the equivalence class of H or one of its signings.
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3. [Hα] for which λk(Hα) is simple with eigenvector v that has v(i) = 0 for a vertex i of degree di.
In this case, under some generic conditions, [Hα] lies in a Morse Bott smooth critical manifold of
dimension di − 3.

The critical manifold in the last part is equal to a moduli space of planar polygons with fixed side
lengths (or planar linkages), whose Betti numbers were computed in [23]. As a result of Morse inequalities
we get the following sufficient condition for the nodal surplus distribution being binomial.

Theorem 16 (A., Goresky). If Hα is regular for all α, then the distribution of the nodal surplus
ϕ(H ′, k)− (k − 1) across all eigenvalues of all signings H ′ ∈ S(H) is Bin(β, 12).

Corollary 17 (A., Goresky). Let H be supported on the complete graph and let V be diagonal with
distinct diagonal elements. Then for large enough η > 0, the distribution of the nodal surplus of H + ηV
and its signings is binomial as above.
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Rendus. Mathématique, 358(11-12):1207–1211, 2020.
[35] J.-P. Roth. Spectre du laplacien sur un graphe. C. R. Acad. Sci. Paris Sér. I Math., 296(19):793–795,

1983.
[36] Holger Schanz and Uzy Smilansky. Periodic-orbit theory of anderson localization on graphs. Phys.

Rev. Lett., 84:1427–1430, Feb 2000.
[37] Dan Shechtman, Ilan Blech, Denis Gratias, and John W Cahn. Metallic phase with long-range

orientational order and no translational symmetry. Physical review letters, 53(20):1951, 1984.
[38] S. Zelditch. Eigenfunctions and nodal sets. Surveys in Differential Geometry, 18:237–308, 2013.

10


	Fourier Quasicrystals
	Spectral geometry, quantum chaos, and nodal count of quantum graphs
	Nodal edge count and Morse theory of magnetic operators on discrete graphs
	Fourier Quasicrystals and Lee-Yang (stable) polynomials
	Future work on one-dimensional FQs
	Future work on High Dimensional Fourier Quasicrystals

	Spectral geometry of quantum graphs (metric graphs)
	Universal nodal count for metric graphs
	Future work and questions

	Neumann count
	Future work and questions

	Generic properties of eigenvalues and eigenfunctions

	Nodal count distribution of signed matrices

