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My research lies in the field of mathematical physics. My main subject of research is
spectral geometry of metric graphs, also known as quantum graphs. I have also works in
progress on different subjects. One work is on the gaps distribution of Fourier Quasicrys-
tals, and another work on nodal count distribution of signed graphs via Morse theory of
Bloch varieties. My research includes questions and methods that relate to other mathe-
matical disciplines such as

(1) Graph theory.
(2) Statistics and Probability.
(3) Fourier Analysis.
(4) Stable Polynomials (real algebraic geometry).
(5) Dynamics and Ergodic theory.
(6) Analytic Number Theory.

The research statement has three sections. The first section provides some highlights from
my works on the nodal count distribution for metric graphs [ABB18, ABB22] in collabo-
ration with Ram Band and Gregory Berkolaiko, the work on Neumann count for metric
graphs [AB21] in collaboration with Ram Band, and my recent work on generic Laplacian
eigenvalues and eigenfunctions on metric graphs [Alo22]. The second section provides
some results from the work in progress on gaps distribution of Fourier Quasicrystals [AV]
in collaboration with Cynthia Vinzant. The third section provides some results from the
work in progress on nodal count distribution for signed graphs via Morse theory of Bloch
varieties [AG] in collaboration with Mark Goresky. Each of these sections contains a rele-
vant future work subsection. Before discussing metric graphs, let me introduce two open
problems in spectral geometry and quantum chaos, that serve as my motivation.

0.1. Quantum Chaos Motivation. Consider the “simple” case of Laplacian with Dirich-
let boundary conditions on a planar domain Ω ⊂ R2. Let NΩ(λ) be the number of
eigenvalues smaller than λ. Hermann Weyl [Wey11] calculated the asymptotic growth
N(λ) ∼ (area(Ω)/4π)λ. A finer analysis of the fluctuations around the asymptotic growth
is much harder. Consider the gaps between consecutive eigenvalues for example. A famous
open conjecture says (roughly)

Conjecture 0.1. [BGS84] If the “billiard flow” on a planar domain is chaotic, then
the (properly normalized) gaps distribution is universal, and agrees with that of GOE
random matrices.

This conjecture was motivated by works of Wigner and was first suggested by Berry, see
[Ber87] and the references therein. Counter examples for more general chaotic manifolds
were found by Sarnak [Sar93]. Another conjecture by Berry was that the eigenfunctions of
a chaotic system should have, locally, a universal behavior of a random Gaussian field (now
called the Berry field). Here too, counter examples were found by Sarnak and Rudnick
[RS94]. Another example of an eigenfunction’s property that is believed to fluctuate in a
universal manner is the nodal count. The nodal count νn of the n-th eigenfunction fn is the
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number of connected components of {x ∈ Ω : fn(x) ̸= 0}. Blum-Gnutzmann-Smilansky
[BGS02] and Bogomolni-Schmit [BS02] conjectured:

Conjecture 0.2. [BGS02, BS02] Given a chaotic domain in the plane, its nodal count
νn is distributed as a Gaussian with mean and variance of order n.

This conjecture is still open. The conjecture was motivated by analysis of the nodal
count of random waves as a percolation model [BS02]. A rigorous analysis of the mean
and variance of the nodal count fluctuations for random waves (Berry’s Gaussian field)
was made by Nazarov and Sodin [NS09, NS20]. The percolation of the nodal domains
of such a Gaussian field was recently addressed by Duminil-Copin, Rivera and others
[DCRRV21, MRVKS20].

1. Spectral geometry of metric graphs (quantum graphs)

A metric graph, which we denote by (Γ, ℓ), is a 1D manifold with singularities. The
graph structure Γ represents the singular points as vertices and the smooth parts as edges
between vertices. We will assume that Γ is a finite connected simple graph with N edges
and without vertices of degree two (removable singularities). Every edge ej has length
ℓj, given by the edge lengths vector ℓ = (ℓ1, . . . , ℓN). Given a function f on (Γ, ℓ), its
restriction to ej is a function on [0, ℓj]. The Laplacian acts edgewise as (minus) second
derivative and we restrict to functions that satisfy Neumann-Kirchhoff vertex conditions.
By eigenvalues and eigenfunctions of (Γ, ℓ) we mean those of the Laplacian. We number
the (square-root) eigenvalues increasingly including multiplicity,

0 = k0 < k1 ≤ k2 ≤ k3 . . . ↗ ∞.

This model, and its generalization to any Schrödinger operator acting along the edges,
appeared in various scientific disciplines in the last few decades, modeling complex phe-
nomena such as superconductivity in granular and artificial materials [Ale83], acoustic and
electromagnetic wave-guide networks [BK03] and Anderson localization [CMV06, SS00] to
name but a few. We will only consider the “simple” geometric setting of Laplacian (with-
out magnetic or electric potential) and Neumann-Kirchhoff vertex conditions. This model
already serves as non-trivial one-dimensional model for spectral geometry, where exotic
mathematical phenomena can often occur. For example, some graph structures have
frequent appearance of scars (unusual localization of eigenfunctions) [BKW04, CdV15].
Another example, number theoretic in nature, is a recent work in progress by Kurasov
and Sarnak on the arithmetic structure of the spectrum of a metric graph. They show
that if the entries of ℓ are linearly independent over Q (we say Q-independent), then
the spectrum is infinite dimensional over Q and has a bound on the maximal length of
arithmetic progressions in it. The name “quantum graph” first appeared in the work of
Kottos and Smilansky [KS97] where they suggested that a metric graph (Γ, ℓ) with Q-
independent ℓ is a good paradigm for quantum chaos. They based their argument on
numerical experiments showing that the gaps distribution of the eigenvalues agrees with
that of the GOE ensemble, as predicted by Conjecture 0.1 for chaotic systems. Barra and
Gaspard [BG00] gave a description of the spectrum of a metric graph using an ergodic
map on a hypersurface in a high-dimensional torus. Using which they expressed the gap
distribution in an analytic implicit way, that enabled a better numerical calculation and
showed a significant deviation from the GOE distribution. However, they conjectured that
this deviation should go to zero as the graph structure grows. more appropriate paradigm
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for chaos was suggested - growing sequence of metric graphs with Q-independent
lengths.

1.1. Universal nodal count for metric graphs. Conjecture 0.2 says that for a chaotic
domain Ω ⊂ R2, there exists constants C, c (that depend on Ω) such that the nodal count
νn can be written as

νn = Cn+ c
√
nσn,

and the normalized deviation σn has the statistics of a normal random variable,

lim
N→∞

|{n ≤ N : σn ≤ t}|
N

= P (Z ≤ t), Z ∼ N(0, 1).

However, it is not even known whether the limits on the left-hand side exist. A similar
universal behavior seems to occur for large metric graphs as well, and in that case much
can be proven, as we showed in [ABB18, ABB22]. The nodal count νn for a metric graph
(Γ, ℓ) is the number of connected components of {x ∈ (Γ, ℓ) : fn(x) ̸= 0}. It is bounded
by n − β ≤ νn ≤ n where β is the first Betti number of the graph. The upper bound
was proved in [GSW04] and the lower bound in [Ber08]. Motivated by Conjecture 0.2, we
consider the normalized deviation σn such that

νn = n− σn.

We showed in [ABB18] that if ℓ is Q-independent, then the σn deviations have well defined
statistics,

lim
N→∞

|{n ≤ N : σn = j}|
N

= P (σ = j),

for some distribution σ supported inside {0, 1, . . . , β} that depends on (Γ, ℓ). The proof
relies on two previous results. A characterization of σn as the Morse index of the n-
th eigenvalue as a function of magnetic perturbation of the Laplacian [BW14], and an
ergodicity argument given in [BG00] that uses the Q-independence of ℓ to obtain analytic
expressions for spectral averages. We show in [ABB18] that the distribution σ has mean
β/2 and is symmetric around it. We call σ the nodal surplus distribution and denote it by
σ(Γ, ℓ) to emphasize its (Γ, ℓ) dependence. We obtained σ(Γ, ℓ) for graphs whose simple
cycles do not intersect at any vertex.

Theorem 1.1. [ABB18] If Γ has vertex-disjoint cycles and ℓ is Q-independent, then
σ(Γ, ℓ) is Binomial with mean β/2 and variance β/4. By the Central Limit Theorem,

σ − β/2√
β/4

→ Z, Z ∼ N(0, 1).

In a recent work [ABB22], we formulate Conjecture 0.2 for metric graphs.

Conjecture 1.2. [ABB22] The distance between σ(Γ, ℓ) and the Gaussian distribution of
same mean and variance goes to zero as β → ∞, uniformly over all (Γ, ℓ) with first Betti
number β and Q-independent ℓ.

We also conjecture that the variance is of order β. A detailed and quantified statement
is given in [ABB22], together with numerical experiments that validate the conjecture. In
[ABB22] we prove the conjecture for two more families of graphs, we prove that σ(Γ, ℓ)
is convex in ℓ and we use it to provide an implicit (sharp) upper bound, C(Γ), on the
difference between σ(Γ, ℓ) and the relevant Gaussian. This bound is uniform in ℓ, and
can be numerically evaluated (efficiently). The experiments in [ABB22] calculate C(Γ)
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numerically for 25 different types of graphs, including random and deterministic. The
decrease of C(Γ) as β grows is clearly shown.

1.1.1. Future work and questions.

(1) Relating the nodal surplus distribution of a graph to its sub-graphs.
(2) Finding models of random graphs for which σ(Γ, ℓ) can be estimated?
(3) Applying the method of [ABB22] to graphs with cluster of disjoint cycles, by

replacing the CLT argument with other types of martingale CLT results.
(4) Controlling the correlation between the contributions of different cycles in terms

of the number of common vertices.

1.2. Neumann count. The concept of a Neumann partition was introduced indepen-
dently in [Zel13, MF14], in analogy to nodal partitions of manifolds, and was further
developed in [BF16, BET17]. The Neumann partition is a Morse partition of the man-
ifold according to an eigenfunction. Connected components of the Neumann partition
are called Neumann domains. The name “Neumann domain/partition” is due to the fact
that the restriction of an eigenfunction f to its Neumann domain Ω is itself a Laplacian
eigenfunction on Ω with Neumann domain boundary conditions. We define a metric graph
analog in [ABBE20, AB21]. The n-th Neumann partition of a metric graph (Γ, ℓ) is given
by removing the critical points along the edges. We denote the Neumann count by µn,
namely the number of connected components of {x ∈ (Γ, ℓ) : f ′

n(x) ̸= 0}. In [AB21], we
provide topological upper and lower bounds on the Neumann count:

n+ 2− 2β − |∂Γ| ≤ µn ≤ n+ β,

where |∂Γ| is the number of degree 1 vertices of Γ. Similarly to the nodal count, the
deviation ωn is defined by µn = n − ωn. We show in [AB21] that then these deviations
have well defined statistics when ℓ is Q-independent,

lim
N→∞

|{n ≤ N : ωn = j}|
N

= P (ω = j) ,

for some distribution ω supported on {−β, . . . , 2β + |∂Γ| − 2}. We also show that ω has

mean β+|∂Γ|−2
2

and is symmetric around its mean. Two applications for inverse problems:

(1) The nodal count and Neumann count provide different information on the graph
structure. For example, σ ≡ 0 for every tree graph (since β = 0), however ω can

distinguish between trees of different |∂Γ|, since E(ω) = |∂Γ|−2
2

.
(2) Access to both E(ω) and E(σ) gives β and |∂Γ| which bound the possible number

of edges and vertices of the graph structure.

Similarly to σ, we conjecture that the distribution of ω has a universal Gaussian behavior
as β + |∂Γ| grows to infinity. Following [ABB18] we prove a binomial result. Call a graph
(d, 1)-regular if its vertex degrees are either d or 1.

Theorem 1.3. [AB21] If Γ is a (3, 1)-regular finite tree and ℓ is Q-independent, then
ω(Γ, ℓ) is Binomial with parameters Bin(|∂Γ| − 2, 1

2
). In particular, it converges to a

Gaussian as |∂Γ| → ∞.

1.2.1. Future work and questions.

(1) Are there distinct graphs with the same nodal and Neumann count?
(2) Is there a Neumann count analog to the nodal-magnetic theorem [BW14].
(3) Numerically, it seems that the bounds −β ≤ ωn ≤ 2β + |∂Γ| − 2 are not optimal.

We conjecture in [AB21] that better bounds hold 0 ≤ ωn ≤ β + |∂Γ| − 2.
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1.3. Generic properties of eigenvalues and eigenfunctions. Fixing a graph Γ of
N edges and letting the edge-lengths ℓ change in RN

+ , we can consider the eigenpairs
(kn, fn)

∞
n=1 as functions of ℓ. Previous works of Friedlander [Fri05] and Berkolaiko and

Liu [BL17] showed that there is a Baire-generic set of edge lengths G ⊂ RN
+ such that

all eigenvalues of (Γ, ℓ) with ℓ ∈ G are simple with eigenfunctions that do not vanish on
vertices. In [Alo22] I show that by restriction to a possibly smaller generic set, we may take
G such that the derivatives of each eigenfunction are non vanishing on all vertices of degree
> 1. I further show that the set G is also of full Lebesgue measure and its complement
is a countable union of sub-analytic sets of smaller codimension, and that we may take it
such that the derivatives of each eigenfunction are non vanishing on all vertices of degree
> 1. We say in such case that G is strongly generic. We had shown in [ABB18] that for
any Q-independent ℓ, the sequence of eigenpairs (kn, fn)n∈N of (Γ, ℓ) has a density one
subsequence of simple eigenvalues with eigenfunctions that do not vanish on vertices. In
[Alo22] I consider a much larger class of spectral properties. Given an eigenpair (k, f), with
k > 0, let tracek(f) be the vector of values of f at the vertices, and the outgoing derivatives
of f normalized by 1

k
. We consider two vertex values and two outgoing derivatives for each

edge so tracek(f) ∈ C4N . Consider the notation exp(kℓ) := (eikℓ1 , eikℓ2 , . . . , eikℓN ) ∈ CN .

Theorem 1.4. [Alo22] Given a graph Γ of N edges and a polynomial q ∈ C[z1, . . . , z5N ].
Assume that q(exp(kℓ), tracek(f)) is homogeneous in the tracek(f) coordinates. If there
exists ℓ ∈ RN

+ such that (Γ, ℓ) has a simple eigenvalue k > 0 with eigenfunction f such
that

q(exp(kℓ), tracek(f)) ̸= 0.

Then, there is a strongly generic set of ℓ’s such that every eigenpair of (Γ, ℓ) has simple
eigenvalue and satisfies

q(exp(kℓ), tracek(f)) ̸= 0.

Moreover, for any Q-independent ℓ, there is a density one subsequence of eigenpairs
(knj

, fnj
)j∈N, such that knj

is simple and

q(exp(knj
ℓ), traceknj

(fnj
)) ̸= 0.

This theorem is based on a proof of Kurasov and Sarnak [KS] to the irreducibility
conjecture of Colin de Verdière [CdV15]. One application of this theorem regards common
eigenvalues of different graphs. Gutkin and Smilansky [GS01] showed that distinct metric
graphs (Γ, ℓ) and (Γ′, ℓ′) with Q-independent ℓ and ℓ′ do not have the same spectrum.
Theorem 1.4 may be applied to provide a stronger statement for the case where ℓ = ℓ′.

Corollary 1.5. [Alo22] If Γ and Γ′ are distinct (non-isomorphic) graphs of N edges, then
there is a strongly generic set of ℓ’s for which the only common eigenvalue of (Γ, ℓ) and
(Γ′, ℓ′ = ℓ) is zero. Moreover, for any Q-independent ℓ, there is a density one subsequence
of (Γ, ℓ) eigenvalues which are not eigenvalues of (Γ′, ℓ′ = ℓ).

Future work:

(1) A conjecture of Sarnak: For generic ℓ, the eigenvalues of (Γ, ℓ) should be Q-
independent.

(2) Quantum Unique Ergodicity for large graphs with Q-independent ℓ. This question
may be approached by analyzing the “trace space” introduced in [Alo22], to show
that traceknj

(fnj
) should have components of the order of 1/4N , as N → ∞.
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2. Fourier Quasi-crystals and Stable Polynomials

A crystal, from a physical point of view, is a system of atoms in a lattice structure, such
as metals and semi-conductors for example. The lattice structure can be experimentally
observed by a scattering experiment, as the diffraction pattern would have peaks at the
dual lattice locations. Mathematically, this phenomena is described by the Poisson sum-
mation formula. If Λ is a lattice with fundamental cell of volume one and dual lattice is
S, then for any Schwartz function f with Fourier transform f̂ ,∑

x∈Λ

f(x) =
∑
k∈S

f̂(k).

Crystalline measures generalize the Poisson summation formula. A Crystalline measure
is a discrete tempered distributions whose Fourier transform is also discrete. That is, a
measure µ =

∑
x∈Λ axδx, supported on a discrete set Λ ⊂ R, is a Crystalline measure if

there is a discrete set S ⊂ R and complex coefficients (ck)k∈S such that for any Schwartz
function f , the following two infinite sums converge and are equal,

(2.1)
∑
x∈Λ

axf(x) =
∑
k∈S

ckf̂(k).

Guinand provided some examples of non-periodic (and hence not Dirac Combs) Crys-
talline measures in [Gui59]. The convergence of the infinite sums in (2.1) may follow from
cancellations of coefficients rather than the structure of Λ and S, as is the case for some of
the Crystalline measures that Guinand constructed assuming the Riemann hypothesis. To
distinguish between the types of convergence, Lev and Olevskii [LO15] call a crystalline
measure µ a Fourier Quasicrystal (FQ) if the sums in (2.1) converge when replacing ax
and ck with |ax| and |ck|. A trivial FQ would be a Dirac Comb or a linear combination
of such. The structure of non-trivial FQ is very rigid and suggests that these should be
somewhat rare. For example, Lev and Olevskii [LO15] showed that given an FQ µ with
a uniformly discrete support Λ and a uniformly discrete S, then µ is trivial. Recently,
Kurasov and Sarnak [KS20] proved several open problems in this field by constructing a
family of non-trivial FQ’s with positive ax coefficients and uniformly discrete support Λ
(and S which is not uniformly discrete). They also provided an example of a such non-
trivial FQ with positive coefficients whose support Λ is uniformly discrete. Let us call µ
an N-FQ if it is an FQ with uniformly bounded positive integer coefficients, ax ∈ N and
ax < M for some M . The construction of Kurasov and Sarnak provides N-FQ’s of the
form

µ =
∑

x∈R : F (x)=0

deg(x)δx,

where deg(x) is the zero’s degree and F is a trigonometric polynomial F (t) = p(exp(itℓ)),
using the notation exp (itℓ) := (eitℓ1 , . . . , eitℓn). They showed in [KS20] that if the fre-
quencies are positive ℓ ∈ Rn

+ and p is a stable polynomial, then µ is an N-FQ. We call
p ∈ C[z1, z2 . . . zn] a stable polynomial1 if p(z1, z2 . . . zn) ̸= 0 whenever all |zj| < 1 or all
|zj| > 1. One can observe that if p is stable and ℓ ∈ Rn

+, then the zeros of F (t) = p(exp(itℓ))
must be real. We say that F is a real-rooted trigonometric polynomial. Olevskii and
Ulanovskii proved the following.

1A polynomial p is said to be “stable on Ω”, for a domain Ω ⊂ C, if p(z1, z2 . . . zn) ̸= 0 whenever zj ∈ Ω

for all j. For simplicity, we call p “stable” if it is stable on the disc D and its complement C \ D.
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Theorem 2.1. [OU20] A measure µ =
∑

x∈Λ axδx is N-FQ if and only if there exists a
real-rooted trigonometric polynomial F such that Λ is its zero set and ax = deg(x).

In a work in progress [AV], joint with Cynthia Vinzant, we conjecture that all N-FQ’s
can be constructed using stable polynomials as in [KS20].

Conjecture 2.2. [AV] Any real rooted trigonometric polynomial F (t) can be written as

F (t) = ceitωp(exp(itℓ)),

with constants c ∈ C, ω ∈ R, a stable polynomial p ∈ C[z1, z2 . . . zn] and a positive
Q-independent vector ℓ ∈ Rn

+, for some n ∈ N.

We call an N-FQ µ a Kurasov-Sarnak-FQ if it can be constructed using stable polynomi-
als as in [KS20] (so that the above conjecture states that any N-FQ is Kurasov-Sarnak-FQ).
We generalize a result of [KS20] and show that

Theorem 2.3. [AV, KS20] Every Kurasov-Sarnak-FQ µ has an additive decomposition,

µ =
N∑
j=1

mjµj, with mj ∈ N, µj =
∑
x∈Λj

aj,xδx,

for some N , such that every µj is a Kurasov-Sarnak-FQ and

(1) Either Λj is an arithmetic progression and aj,x = 1 for all x ∈ Λj.
(2) Or, µj is non-trivial and satisfies

(a) G ∩ Λj is finite for any G ⊂ R which is a projection of a lattice in Rn to R.
(b) Almost all aj,x equal one,

lim
T→∞

|{x ∈ Λj ∩ [−T, T ] : aj,x = 1}|
|Λj ∩ [−T, T ]|

= 1.

Both [KS20, OU20] construct Kurasov-Sarnak-FQ’s with uniformly discrete support Λ.
In [AV] we show that this is in fact a generic property.

Theorem 2.4. [AV] A generic Kurasov-Sarnak-FQ has uniformly discrete support. Let
Cd[z1, . . . , zn] be the vector space of polynomials of total degree at most d, and let Sn,d ⊂
Cd[z1, . . . , zn] be the sub manifold of stable polynomials. There is an open-dense, full
measure, algebraic set O ⊂ Sn,d such that for any p ∈ O and any ℓ ∈ Rn

+, the zero set of
p(exp(itℓ)) is uniformly discrete.

Finally, we discuss the gaps distribution for Kurasov-Sarnak-FQ’s.

Theorem 2.5. [AV] Let p ∈ C[z1, . . . , zn] be stable and let ℓ ∈ Rn
+ be Q-independent. Let

(xj)j∈Z denote the zeros of F (x) := p(exp(ixℓ)), with multiplicity deg(x).Then,

(1) The gaps distribution ρp,ℓ is well defined: For any m ∈ Z and continuous f ,

lim
N→∞

1

N

m+N∑
n=m+1

f(xn+1 − xn) =

∫
fdρp,ℓ.

(2) The gaps distribution ρp,ℓ is a Borel probability measure supported inside a finite
interval [0, r]. It has at most finitely many atoms and no singular-continuous part.
If p is irreducible, then either all gaps are equal (arithmetic progression) or ρp,ℓ is
absolutely continuous.
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(3) ρp,ℓ is weakly continuous in ℓ. Given any continuous f and any sequence (ℓj)j∈N,
such that ℓj → ℓ and each ℓj ∈ Rn

+ is Q-independent,

lim
j→∞

∫
fdρp,ℓj =

∫
fdρp,ℓ.

2.1. Future work.

(1) Applying tropical geometry tools to Conjecture 2.2.
(2) By analyzing the gap distribution of µp,ℓ as a function of p and ℓ, we may be able

to achieve progress in Conjecture 0.1 for metric graphs.
(3) Constructing a model of random Fourier Quasi-Crystals in terms of random sta-

ble polynomials. For example, if p(z1, . . . , zn) = det(1 − diag(z1, . . . , zn)U) for a
random unitary U ∈ Un, then the gap distribution should converge to that of the
CUE ensemble.

(4) Higher dimensional analogs. Is it possible to create quasi-crystals in higher dimen-
sions using stable varieties of higher co-dimension?

3. Nodal count distribution of signed matrices

The work [AG] is a work in progress joint with Mark Goresky. It is partially an analog
of [ABB22] for discrete graphs and partially extension of the works [Ber13, CdV13]. Let
G be a simple connected graph on n ordered vertices labeled 1, 2, · · · , n. Write r ∼ s if
r ̸= s are vertices connected by an edge. Functions on G are vectors, v = (v1, v2, · · · , vn),
in Rn or Cn. An n × n matrix h is supported on G if hrs ̸= 0 =⇒ r ∼ s or r = s.
We let Sn(G), Hn(G) and An(G) denote the vector spaces of real symmetric matrices,
complex hermitian matrices and real antisymmetric matrices supported on G. A discrete
Schrödinger operator is a real symmetric matrix h ∈ Sn(G) with hrs < 0 for r ∼ s. The
quadratic form associated with h ∈ Sn(G) may be expessed as that of a weighted Laplacian
∆ plus a “potential” V ,

⟨f, hf⟩ = −
∑
r∼s

hrs (f(r)− f(s))2 +
n∑

r=1

V (r)f(r)2,

where V (r) = hrr +
∑

r∼s hrs. We number the eigenvalues from below

λ1(h) ≤ λ2(h) ≤ · · · ≤ λn(h),

and consider each λk as a function of h ∈ Hn(G). Suppose λk is a simple (multiplicity one)
eigenvalue of h with a nowhere-vanishing eigenvector v (meaning that vr ̸= 0 for all r). A
basic problem in graph theory is to understand the behavior of the nodal count ϕ(h, k),
that is, the number of edges r ∼ s for which v changes sign: v(r)v(s) < 0. It is known
that k−1 ≤ ϕ(h, k) ≤ k−1+β, where β is the first Betti number of G. See [DGLS01] for
a review of the many works leading to the upper bound, and [Ber13] for the lower bound.
This motivates the definition of the nodal surplus

ϕ(h, k)− (k − 1) ∈ {0, 1, · · · , β}
and its probability distribution P (h) over the n possible eigenvalues:

P (h)s =
1

n
#
{
1 ≤ k ≤ n

∣∣ ϕ(h, k)− (k − 1) = s}.

In numerical simulations for large graphs, this distribution seems to concentrate around β
2

with variance of the order of β, similarly to the observations for metric graphs in [ABB22].
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Following [Ber13, CdV13, ABB18] we investigate the nodal count by considering magnetic
perturbations of h. Given a discrete Schrödinger operator h ∈ Sn(G), a magnetic potential
α ∈ An(G) is a real anti-symmetric matrix supported on G and the associated magnetic
Schrödinger operator hα ∈ Hn(G) is the Hermitian matrix (hα)rs = eiαrshrs. Given h we
consider the manifold Th ⊂ Hn(G) of all hα with α ∈ An(G). Th is a torus containing h.
The k-th eigenvalue function λk, restricted to Th, has a critical point at h whose Morse
index is exactly ϕ(h, k) − (k − 1) [Ber13, CdV13]. The needed assumption is that λk(h)
is simple with a nowhere vanishing eigenvector. The critical point is non-degenerate if we
consider λk as a function on the quotient Mh, which is Th modulo gauge transformations
(that preserves the eigenvalues). The graphs of the eigenvalue functions (hα, λk(hα)), for
hα ∈ Th and k = 1, 2, . . . , n, is also known as the Bloch Variety or Dispersion relation

manifold associated to the periodic discrete Schrödinger operator ĥ on Ĝ. For Ĝ, the

universal abelian cover of G and ĥ the periodic extension of h to Ĝ. The spectrum of ĥ
is the union of the spectrum of hα for all hα ∈ Th, according to the Bloch theorem. It is
a union of disjoint intervals called bands whose endpoints correspond to critical points on
the Bloch Variety. The simplest critical points are the symmetry points: points fixed by
complex conjugation, i.e. real symmetric matrices. These are all the signed matrices, i.e.
the real symmetric matrices obtained from h by changing signs of off-diagonal elements.
In [AG] we show that each critical point g ∈ Th with nowhere vanishing eigenvector and
simple eigenvalue λk(g) is necessarily in the gauge equivalence class of a symmetry point,
and we also give a homological criterion for symmetry points. We show that if g has a
simple eigenvalue with eigenvector v, then g is a critical point if and only if v̄rhrsvs ∈ R for
all r ∼ s. Following [CdV13, Remark 1], we generalize the nodal count to any critical point
g. We let ϕ(g, k) be the number of edges r ∼ s such that v̄rhrsvs > 0. We show that as long
as the eigenvalue is simple and the eigenvector is nowhere vanishing then the nodal surplus
ϕ(g, k)− (k− 1) equals the Morse index, as before, and so the bounds remains between 0
and β, the first Betti number of G. The nodal surplus distribution P (g) is similarly defined.
Let S(h) stand for all the signed matrices obtained from h ∈ Sn(G). Assume that h and
all its signings h′ ∈ S(h) have simple eigenvalues with nowhere-vanishing eigenvectors, so
the distribution can be averaged over signings to give the average nodal distribution

P (S(h)) = 2−|E|
∑

h′∈S(h)

P (h′).

Following many numerical simulations, and based on joint works with Ram Band and
Gregory Berkolaiko, we conjecture

Conjecture 3.1. [AG] If G has large β and h ∈ Sn(G) satisfies the above assumptions so
that P (S(h)) is well defined, then P (S(h)) is approximately binomial with mean β/2 and
variance of order β.

I will not elaborate at this point on the nature of this approximation or convergence to
Gaussian. We have the following results.

Theorem 3.2. [AG] Assume that h and all its signings h′ ∈ S(h) have simple eigenvalues
with nowhere-vanishing eigenvectors, and further assume that every critical point in Th,
for every eigenvalue, has simple eigenvalue with nowhere-vanishing eigenvector. Then,
P (S(h)) is binomial with mean β/2 and variance β/4.

Theorem 3.3. [AG] Assume that h and all its signings h′ ∈ S(h) have simple eigenvalues
with nowhere-vanishing eigenvectors, and further assume that all diagonal elements of h
are equal, then P (S(h)) has mean β/2 and is symmetric around its mean.
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